Water magnetic relaxation dispersion in biological systems: the contribution of proton exchange and implications for the noninvasive detection of cartilage degradation.

نویسندگان

  • U Duvvuri
  • A D Goldberg
  • J K Kranz
  • L Hoang
  • R Reddy
  • F W Wehrli
  • A J Wand
  • S W Englander
  • J S Leigh
چکیده

Magnetic relaxation has been used extensively to study and characterize biological tissues. In particular, spin-lattice relaxation in the rotating frame (T(1rho)) of water in protein solutions has been demonstrated to be sensitive to macromolecular weight and composition. However, the nature of the contribution from low frequency processes to water relaxation remains unclear. We have examined this problem by studying the water T(1rho) dispersion in peptide solutions ((14)N- and (15)N-labeled), glycosaminoglycan solutions, and samples of bovine articular cartilage before and after proteoglycan degradation. We find in model systems and tissue that hydrogen exchange from NH and OH groups to water dominates the low frequency water T(1rho) dispersion, in the context of the model used to interpret the relaxation data. Further, low frequency dispersion changes are correlated with loss of proteoglycan from the extra-cellular matrix of articular cartilage. This finding has significance for the noninvasive detection of matrix degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetic Resonance Water Proton Relaxation in Protein Solutions and Tissue: T1ρ Dispersion Characterization

BACKGROUND Image contrast in clinical MRI is often determined by differences in tissue water proton relaxation behavior. However, many aspects of water proton relaxation in complex biological media, such as protein solutions and tissue are not well understood, perhaps due to the limited empirical data. PRINCIPAL FINDINGS Water proton T(1), T(2), and T(1rho) of protein solutions and tissue wer...

متن کامل

Studies on the SPEEK membrane with low degree of sulfonation as a stable proton exchange membrane for fuel cell applications

Sulfonated poly (ether ether ketone) (SPEEK) with a low degree of sulfonation (DS = 40%) was prepared for proton exchange membrane fuel cells (PEMFC). Poly (ether ether ketone) (PEEK) was sulfonated in concentrated H2SO4 under N2 atmosphere and characterized by the hydrogen nuclear magnetic resonance (H-NMR) technique. After preparation of the SPEEK polymer, the obtained polymer was dissolved i...

متن کامل

Methanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications

In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT ...

متن کامل

Designing an approprate solenoid and magnetic field for the HZDR laser-driven beamline

Nowadays, due to the high costs and large dimensions of the conventional proton accelerators, other optimal methods for producing the proton beam have been studied. Using of Laser-driven proton accelerators is one of the important and new methods. In laser-driven ion acceleration, a highly ultra-intense laser pulse interacts with solid density targets and will create a plasma media that will ac...

متن کامل

Molecular theory of field-dependent proton spin-lattice relaxation in tissue.

A molecular theory is presented for the field-dependent spin-lattice relaxation time of water in tissue. The theory attributes the large relaxation enhancement observed at low frequencies to intermediary protons in labile groups or internal water molecules that act as relaxation sinks for the bulk water protons. Exchange of intermediary protons not only transfers magnetization to bulk water pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 22  شماره 

صفحات  -

تاریخ انتشار 2001